Effects of zinc nanoparticles and vitamin E on growth and immune parameters of common carp, Cyprinus Carpio

Document Type : Research Paper


1 PhD student, Department of Aquaculture, College of Agriculture and Natural Resources, Qaemshahr Brunch, Islamic Azad University, Qaemshahr, Mazandaran, Iran

2 Department of Fisheries, College of Agriculture and Natural Resources, Qaemshahr Brunch, Islamic Azad University, Qaemshahr, Mazandaran, Iran



In this study, the mutual effects of zinc nanoparticles (Zn-NPs) and vitamin E nanoparticles (Vit E-NPs) on growth and immune parameters of fingerling Cyprinus Carpio with an average weight of 9 g was evaluated over a period of 60 days in three different treatments (treatment I : 100 IU/kg normal vitamin E + 15 mg/kg normal zinc sulfate; treatment II: 100 IU/kg Vit E-NPs + 15 kg/mg Zn-NPs; treatment III: 300 IU/kg Vit E-NPs + 15 kg/mg Zn-NPs) compared to the control group that received normal diet without any supplements. The results showed significant increase in the mean percent body weight increases (144.1 ± 56.85%), average daily growth (2.41 ± 0.15 %), specific growth rate (1.46 ± 0.13 %/day) and feed conversion ratio (FCR, 4.59 ± 0.68), immunoglobulin (IgM, 4.49 ± 1.71 mg/dL) in treatment III compared to the control group (p<0.05). However, the condition factor was the highest in the control group and there was no significant difference between control group and the other treatments (p>0.05). The survival rate (%SR) was significantly increased compared to the control group, but there was no significant difference between different treatments (p > 0.05). Based on these findings, treatment III is recommended for increasing the growth indices and treatment II for enhancing immune parameters in C. carpio.


حیدری کاهکش، غ.، چله مال دزفول نژاد ، م. 1396. کارائی رشد ماهی آمور (Ctenopharyngodon idella) در مواجهه با نانو ذرات اکسید روی. اکولوژی تالاب 32: 26-19.
سالنامه آماری سازمان شیلات ایران 1398-1393. انتشارات سازمان شیلات ایران، 64 ص.
Alishahi, A., Mirvaghefi, A., Tehrani, M.R., Farahmand, F.A., Shojaosadati, S.A., Dorkoosh, F.A. 2011. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry 126: 935-940.
Astete, C.E., Dolliver, D., Whaley, M., Khachatryan, L., Sabliov, C. 2011. Antioxidant poly (lactic-co-glycolic) acid nanoparticles made with α-tocopherol–ascorbic acid surfactant. ACS Nano 5: 9313-9325.
Davis, D.A., Gatlin, D.M. 1996. Dietary mineral requirements of fish and marine crustaceans. Reviews in Fisheries Science 4: 77-99.
Faiz, H., Zuberi, A., Nazir, S., Rauf, M., Younus, N. 2015. Zinc oxide, zinc Sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile Grass Carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology 17: 568-574.
FAO. 2016. FAO Yearbook of fishery statistics. Food and Agriculture Organization of the United Nations Rome, 225 p.
Ghafari Farsani, H., Binde Doria, H., Jamali, S., Hasanpour, N., Mehdipour, Rashidiyan, G. 2017. The protective role of vitamin E on Oreochromis niloticus exposed to ZnO-NP. Ecotoxicology and Environmental Safety 145: 1-7.
Halver, J., Hardy, R. 2002. Fish Nutrition. Academic Press 839 p.
Hung, S.S.O., Lutes, P.B., Storebakken, T. 1989. Growth and feed efficiency of white sturgeon (Acipenser transmontanus) subyearling at different feeding rates. Aquaculture 80: 147-153.
Imamoglu, S., Bereket, A., Turan, S., Tagaand, Y., Haklar, G. 2005. Effect of zinc supplementation on growth hormone secretion, IGF-I, IGFBP-3, somatomedin generation, alkaline phosphatase, osteocalcin and growth in prepubertal children with idiopathic short stature. Pediatric Endocrinal Metabolism 18: 69-74.
Jeng, S.S., Sun, L.T. 1981. Effects of dietary zinc levels on zinc concentrations in tissues of common carp. Nutrition 111: 134-140.
Keen, C.L., Uriu-Adams, J.Y., Ensuma, J.L., Gershwin, M.E. 2004. Trace elements/minerals and immunity. In: Gershwin, M.E., Nestel, P., Keen, C.L., editors. Handbook of Nutrition and Immunity. Humana Totowa, NJ, 365 p.
Khan, K.U., Zuberi, A., Nazir, S., Ullah, I., Jamil, Z., Sarwar, H. 2017. Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquaculture Reports 5: 70-75.
Khan, M.Z.H., Hossain, M.M.M., Khan, M., Ali, M.S., Aktar, S., Moniruzzaman, M., Khan, M. 2020.  Influence of nanoparticle-based nano-nutrients on the growth performance and physiological parameters in tilapia (Oreochromis niloticus). RSC Advances 10: 29918-29922.
Kumar, N., Krishnani, K.K., Singh, N.P. 2018. Effect of Dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biological Trace Element Research 186: 267-278.
Li, P., Gatlin, D.M. 2009. Dietary vitamin E requirement of the red drum (Sciaonops ocellatus). Aquaculture Nutrition 15: 313-319.
Liang, J.J., H.J. Yang, Y.J. Liu, L.X. Tian., G.Y. Liang. 2012. Dietary requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquaculture Nutrition 18: 380-387.
Lonnerdal, B. 2000. Dietary factors influencing zinc absorption. Nutrition 130: 1378-1383.
Lovell, R.T. 1989. Nutrition and feeding of fish. Van Nostra and Reinhoil New York, 260 p.
 Luo, Y.H., Chang, L.W., Lin, P. 2015. Metal-based nanoparticles and the immune system: activation, inflammation and potential applications. BioMed Research International 1-12.
Naderi, M., Keyvanshokooh, S., Salati. A.P., Ghaedi, A. 2017. Proteomic analysis of liver tissue from rainbow trout (Oncorhynchus mykiss) under high rearing density after administration of dietary vitamin E and selenium nanoparticles. Comparative Biochemistry and Physiology 22D: 10-19.
NRC. 2011. Nutrient Requirements of Fish and Shrimp. National Academy Press, Washington, DC, 392 p.
Onuegbu, C.U., Aggarwal, A., Singh, N.B. 2018. ZnO nanoparticles as feed supplement on growth performance of cultured African catfish fingerlings. Scientific Industries Researches 77: 213-218.
Rahman, R.M. 2018. Evaluation of the effects of dietary vitamin C, E and zinc supplementation on growth performances and survival rate of Rohu, Labeo rohita. Journal of Agriculture and Veterinary Science 11: 68-74.
Rajendran, D. 2013. Application of nano minerals in animal production system. Research Journal of Biotechnology 8: 13.
Rather, M.A., Sharma, R., Aklakur, M., Ahmad, S., Kumar, N., Khan, M., Ramya, V.L. 2011. Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fisheries and Aquaculture 16: 1-5.
Shearer, K.D., Houle, C.R. 1983. High zinc supplementation of rainbow trout diets. The Progressive Fish-Culturist 45: 144-147.
Siklar, Z., Tuna, C., Dallar, Y., Tanyer, G. 2003. Zinc deficiency: a contributing factor of short stature in growth hormone deficient children. Tropical Pediatrics 49: 187-188.
Swain, P., Das, R., Das, A., Padhi, S.K., Das, K.C., Mishra, S.S. 2018. Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquaculture Nutrition 27: 1-9.
Taheri, S., Banaee, M., Haghi, B.N., Mohiseni, M. 2017. Effects of dietary supplementation of zinc oxide nanoparticles on some biochemical biomarkers in common carp (Cyprinus carpio). Aquatic Biology 5: 286-294.
Tan, B., Mai, K. 2001. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone. Haliotis discus hannai Ino. Aquaculture 192: 67-84.
Tawfik, M.M.M., Moustafa, M.M., Abumourad, I.M.K., El-Meliegy, EM. Refai, M.K. 2017. Evaluation of Nano Zinc Oxide feed additive on tilapia Growth and Immunity. 15th International Conference on Environmental Science and Technology Rhodes, Greece.
Thangapandiyan, S., Monika, S. 2020. Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biological Trace Element Research 195: 636-647.
Yildirim-Aksoy, M., Lim, C., Li, M.H., Phillip Klesius, H. 2008. Interaction between dietary levels of vitamins C and E on growth and immune responses in channel catfish, Ictalurus punctatus (Rafinesque). Aquaculture Research 39: 1198-1209.