Effects of diet containing different levels of yeast, Saccharomyces cerevisiae and plant proteins on growth indices, carcass biochemical composition and total intestinal bacteria count in a recirculating aquaculture system for rearing rainbow trout, Oncorhynchus mykiss

Document Type : Research Paper

Authors

Department of Fisheries, Natural Resources Faculty, University of Tehran, Karaj, Alborz, Iran

10.22124/janb.2022.19449.1136

Abstract

In this study, several balanced protein diets using plant proteins and yeast, were employed with the aim of reducing the fish meal in the diet. The experimental treatments included: control (T0) as commercial diet, (Faradaneh Co., Iran); treatment 1 (T1) containing 25% fish meal (FM) and 58% plant protein (pp); treatment 2 (T2) containing 23% FM, 4% yeast, 47% pp; treatment 3 (T3:  20% FM, 9% yeast, 52% pp); treatment 4 (T4: 18.5% FM, 14.5% yeast, 46% pp); treatment 5 (T5: 17% FM, 21% yeast, 41% pp); treatment 6 (T6: 10% FM, 25% yeast, 45% pp) and treatment 7 (T7: 28.5% yeast, 45% pp). A total of 160 rainbow trout Oncorhynchus mykiss fingerlings with an average weight of 38 ± 2 were randomly introduced into the 16 experimental tanks and cultured for nine weeks. The results showed that the growth performance of fish such as final weight, specific growth rates and protein efficiency rates increased in T3 in comparison with the other treatments (p<0.05). The highest carcass protein was observed in T3 and the highest fat was observed in the control group. The highest total count intestinal bacteria was observed in treatment 5 and the lowest in control and treatment 2 (p<0.05). The best experimental diet was recorded in T3. It was found that growing rainbow trout using diets containing vegetable proteins, yeast, without fish meal is possible.

Keywords


اکرمی، ر.، حاجی مرادلو، ع.، متین فر، ع.، عابدیان کناری، ع.، مازندرانی، ر. 1387. تاثیر پربیوتیک اینولین بر شاخص تولید و تراکم باکتریایی دستگاه گوارش فیل ماهیان (Huso huso) جوان پرورشی. فن­آوری­های نوین در توسعه آبزی پروری 2: 10-1.
امدادی، ب.، سجادی، م.م.، یزدانی، م.ع.، شکوریان، م. 1392. تاثیر جایگزینی مقادیر مختلف آرد ماهی توسط کنجاله سویا در جیره غذایی بچه ماهیان ازون برون (Acipenser stellatus)، بر میزان رشد، ضریب تبدیل غذایی و میزان ترکیبات شیمیایی لاشه، عضله و بافت کبد. مجله علمی شیلات ایران 2: 34-25.
اندانی، ح.، توکمه چی، ا.، مشکینی، س.، و ابراهیمی، ه. 1390. افزایش مقاومت ماهی قزل­آلای رنگین­کمان در برابر عفونت با آئروموناس هیدروفیلا و یرسینیا روکری با استفاده از لاکتوباسیل­های جدا شده از روده ماهی کپور معمولی. دامپزشکی ایران 31: 35-26.
فئید، م.، کسری کرمانشاهی، ر.، پورکاظمی، م.، داربویی، م.، حقیقی، س. 1397. بررسی تأثیر غذادهی با پروبیوتیک بر افزایش مقاومت در برابر آئروموناس هیدروفیلا و تغییر جوامع باکتریایی دستگاه گوارش ماهی سوف سفید. زیست شناسی میکروارگانیسم­ها 7: 12-1.
 
AOAC, 2005. Official methods of analysis. (16th Ed.), Association of Official Analytical Chemists, Washington, DC.
Bonvini, E., Bonaldo, A., Mandrioli, L., Sirri, R., Dondi, F., Bianco, C., Parma, L. 2018. Effects of feeding low fishmeal diets with increasing soybean meal levels on growth, gut histology and plasma biochemistry of sea bass. Animals 12: 923-930.
Catacutan, M.R., Pagador, G.E. 2004. Partial replacement of fish meal by defatted soybean meal in formulated diets for the mangrove red snapper, Lutjanus argentimaculatus (Forsskal 1775). Aquaculture Research 35: 299-306.
Cheng, Z., Ai, Q.,  Mai, K.,  Xu, W.,  Ma, H., Li, Y., Zhang, J. 2010. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass, Lateolabrax japonicas. Aquaculture 305: 102-108.
Da Silva, B. C., Vieira, F.do.N., Mouriño, J. L.P., Ferreira, G.S., Seiffert, W.Q. 2013. Salts of organic acids selection by multiple characteristics for marine shrimp nutrition. Aquaculture 384-387: 104-110.
Dediu,  L., Cristea. V., Xiaoshuan,  Z. 2012. Waste production and valorization in an integrated aquaponic system with bester and lettuce. African Journal of Biotecnology 11: 2349-2358.
Desai, A.R., Links, M.G., Collins, S.A., Mansfield, G.S., Drew, M.D., Van Kessel, A.G., Hill, J.E. 2012. Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 350-353: 134-142.
Drew, M.D. 2004. Canola protein concentrate as a feed ingredient for salmonid fish. In: VII International symposium on aquaculture nutrition (eds. L.E. Cruz Suarez, D. Ricque Marie, M.G. Nieto Lopez, D. Villarreal, U. Scholz, M. Gonzalez), pp. 168-181. Hermosillo, Sonora, Mexico.
FAO. 2016.  The State of World Fisheries and Aquaculture (SOFIA). Food and Agriculture Organization of the United Nations.
Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Wurtele, E. 2007. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquaculture Research 38:  551-579.
Gomes, E.F., Rema, P., Kaushik, S.J. 1995. Replacement of fish meal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture 130: 177-186.
Hardy, R.W. 2010. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research 41: 770-776.
Hardy, R.W., Sugiura, S., Babbitt, J., Dong, F.M. 2000.  Utilization of fish and animal by-product meals in low-pollution feeds for rainbow trout (Oncorhynchus mykiss). Aquaculture Research  31: 585-593.
 Hung, S.S.O., Storebakken, T., Cui, Y., Tian, I., Einen, O. 1997. High-energy diets for white sturgeon, Acipenser transmontanus Richardson. Aquaculture Nutrition 3: 281-286.
Huyben, D., Nyman, A., Vidaković, A., Passoth, V., Moccia, R., Kiessling, A., Lundh, T. 2017.  Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture 473: 528-537.
Kaushik, S., Coves, D., Dutto, G., Blanc, D. 2004Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass Dicentrarchus Labrax. Aquaculture 230: 391-404.
Lech, G.P., Reigh, R.C. 2012Plant products affect growth and digestive efficiency of cultured florida pompano (Trachinotus carolinus) fed compounded diets. PLoS ONE 7: e34981.
Liang, X. F., Hu, L., Dong, Y.C., Wu, X.F., Qin, Y.C., Zheng, Y.H., Liang, X.F. 2017. Substitution of fish meal by fermented soybean meal affects the growth performance and flesh quality of Japanese seabass (Lateolabrax japonicus). Animal Feed Science and Technology 229: 1-12.
Mariscal-Lagarda, MM., Páez-Osuna, F., Esquer-Méndez, JL., Guerrero-Monroy, I., Vivar, AR., Félix-Gastelum, R. 2012.  Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: management and production. Aquaculture 366: 76-84
Mente, E., Deguara, S., Santos, M.B., Houlihan, D. 2003.  White muscle free amino acid concentrations following feeding a maize gluten dietary protein in Atlantic salmon (Salmo salar L.). Aquaculture 225: 133-147.
Omnes, M.H., Le Goasduff, J., Le Delliou, H., Le Bayon, N., Quazuguel, P., Robin, J.H. 2017.  Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.). Aquaculture Reports  6:  21-27.
Pereira, T.G., Oliva-Teles, A. 2003. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles. Aquaculture Research 34: 1111-1117.
Pratoomyot, J., Bendiksen, E.Å., Bell, J.G., Tocher, D.R. 2010.  Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture  305: 124-132.
Radhakrishnan, S.E.H., Belal, I., Seenivasa, C., Muralisankar, T., Saravana, B. 2016. Impact of fishmeal replacement with Arthrospira platensis on growth performance, body composition and digestive enzyme activities of the freshwater prawn, Macrobrachium rosenbergii. Aquaculture Reports 3: 35-44.
Rafiee, G., Saad, C. 2006.  The effect of natural zeolite (Clinoptiolite) on aquaponic production of red tilapia (Oreochromis sp.) and lettuce (Lactuca sativa var. longifolia), and improvement of water quality. Journal of Agricultural Science and Technology 8: 313-322.
Rakocy, J.E., Massor, M.P., Losordo, T.M. 2006. Recirculating aquaculture tank production systems: aquaponics integrating fish and plant culture. SRAC Publication, No. 454, 16 p.
Shurson, G.C. 2018. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology 235: 60-76.
Soltan, M.A.,  Hanafy, M.A., Wafa, M.I.A. 2008. Effect of replacing fish meal by a mixture of different plant protein sources in Nile tilapia (Oreochromis niloticus L.) diets. Global Veterinaria 2: 157-164.
Storebakken, T., Shearer, K.D., Baeverfjord, G., Nielsen, B.G., Åsgård, T., Scott, T., De Laporte, A. 2000.  Digestibility of macronutrients, energy and amino acids, absorption of elements and absence of intestinal enteritis in Atlantic salmon, Salmo salar, fed diets with wheat gluten. Aquaculture 184: 115-132. 
Sussel, F.R., Viegas, E.M. M., Evangelista, M.M., Gonçalves, G.S., Salles, F.A., Gonçalves, L.U. 2014.  Replacement of animal protein with vegetable protein in the diets of Astyanax altiparanae. Acta Scientiarum Animal Sciences 36: 34-39.
Ta’Ati, R., Soltani, M., Bahmani, M., Zamini, A. 2011. Growth performance, carcass composition, and immunophysiological indices in juvenile great sturgeon (Huso huso) fed on commercial prebiotic, Immunoster. Iranian Journal of Fisheries Sciences 10: 324-335.
Wang, Y., Wang, L., Zhang, C., Song, K. 2017. Effects of substituting fishmeal with soybean meal on growth performance and intestinal morphology in orange-spotted grouper (Epinephelus coioides). Aquaculture Reports 5: 52-57.
Watanabe, T. 1993. Importance of docosahexaenoic acid in marine larval fish. Journal of the World Aquaculture Society 24: 153-161.
Xue, G.D., Wu, S.B., Choct, M., Swick, R.A. 2017. Effects of yeast cell wall on growth performance, immune responses and intestinal short chain fatty acid concentrations of broilers in an experimental necrotic enteritis model. Animal Nutrition 3: 399-405.
Yigit, M., Erdem, M., Koshio, S., Ergun, S., Turker, A., Karaali, B. 2006.  Substituting fish meal with poultry by-product meal in diets for black Sea turbot Psetta maeotica. Aquaculture Nutrition 12: 340-347.
Yigit, M., Ergün, S., Türker, A., Harmantepe, B., Erteken, A. 2010. Evaluation of soybean meal as a protein source and its effect on Black Sea Turbot (Psetta maeotica) juveniles. Journal of Marine Science and Technology 18: 682-688.