تأثیر دوره های کوتاه مدت محرومیت غذایی و تغذیه مجدد بر مقاومت بچه ماهی کلمه دریای خزر (Rutilus caspicus) نسبت به شوری آب دریای خزر: عملکرد رشد، شاخص استرس و پاسخ ایمنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی، دانشکده علوم پایه و فنی مهندسی، دانشگاه گنبد کاووس، گنبد کاووس، گلستان

2 گروه شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، گلستان

3 گروه تولید و بهره برداری، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، گلستان

چکیده

این مطالعه با هدف بررسی توان بچه ماهیان کلمه دریای خزر (Rutilus caspicus) (g 018/0 ± 4/1) در تحمل شوری آب دریای خزر به روش انتقال مستقیم طی دوره­های کوتاه مدت گرسنگی و تغذیه مجدد به مدت 60 روز انجام شد. به این منظور، 450 عدد بچه­ماهی به­طور تصادفی در پنج گروه توزیع شد: سه گروه از ماهیان پس از قرار گرفتن در دوره­های محرومیت غذایی 3، 5 و 7 روز (3S، 5S و 7S)، به مدت 10 روز مجدداً تغذیه شدند و این چرخه به مدت 46 روز تکرار شد. گروه چهارم، در تمام مدت آزمایش در محرومیت غذایی قرار گرفتند (S) و گروه پنجم به­طور پیوسته تغذیه شدند (F یا گروه کنترل). تمام ماهیان به­طور مستقیم به آب دریای خزر به­مدت 14 روز انتقال داده شدند و طی این مدت نیز غذادهی نشدند. عمـلکرد رشد در تـمامی تیمارهای مورد آزمایش محاسبه شد. بـرخی از شاخص­های استرس (اسمولالیته، کورتیزول و گلوکز) و پاسخ ایمنی (ایمونوگلوبولین کل و فعالیت لیزوزیم) نسبت به دوره­های متناوب تغذیه­ای و افزایش ناگهانی شوری در بدن ماهیان اندازه گیری شد. بر اساس نتایج به­دست آمده، ماهیان گروه­های 3S و 5S، پس از گروه F، دارای نرخ رشد مناسبی بودند. میزان اسمولالیته، کورتیزول و گلوکز آنها پس از انتقال شوری و عدم تغذیه به مدت دو هفته نسبت به گروه F تفاوتی نشان نداد و دستگاه ایمنی آنها نیز تحریک نشد. بنابراین، بچه ماهیان کلمه با دوره­های گرسنگی کوتاه مدت، نه تنها تحت تأثیر استرس فیزیولوژیک ناشی از گرسنگی و افزایش شوری قرار نمی­گیرند، بلکه عملکرد رشد آنها نیز به­واسطه زندگی در محیط ایزواسموتیک دریای خزر بهبود می­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of short-term food deprivation and re-feeding on the resistance of juvenile Caspian roach, Rutilus caspicus to the salinity of the Caspian Sea: growth performance, stress indices and immune response

نویسندگان [English]

  • Rabeyeh Naemi 1
  • Seyedeh Ainaz Shirangi 1
  • Hossein Adineh 2
  • Hadiseh Kashiri 3
1 Department of Biology, Faculty of Basic Sciences & Engineering, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
2 Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
3 Department of Aquatic Ecology, Faculty of Fisheries & Environment, Gorgan University of Agricultural and Natural Resources, Gorgan, Golestan, Iran
چکیده [English]

This study was performed to evaluate the ability of juvenile Caspian roach Rutilus caspicus (1.4 ± 0.018 g) to acclimate to the salinity of the Caspian Sea by the direct transfer method with short-term starvation and re-feeding periods within 60 days. So, 450 juvenile fish were randomly distributed into 5 groups: three groups were deprived from feeding for 3, 5 and 7 days (3S, 5S and 7S). They were then re-fed for 10 days and this cycle was repeated during 46 days. Forth group were unfed during the whole experimental period (S) and fifth group were continuously fed (F or control group). All fish after the starvation-refeeding in freshwater were directly transferred to the Caspian Sea water for 14 days, and staved during this period. Growth performance were evaluated for all of the experimental treatments. Some of stress indices (osmolality, cortisol and glucose) and immune response (total immunoglobulin and lysozyme) concerning to the alternative nutritional periods and abrupt salinity elevation were measured in fish blood. The highest and lowest fish growth performance were obtained in F and S groups, respectively. Osmolality and lysozyme activity were not statistically significant between F, 3S and 5S groups. Total immunoglobulin was significantly increased in 5S (31.50 ± 0.99 mg/g). The highest cortisol and glucose concentrations were obtained in groups 7S and S compared to the other experimental groups. The results showed that, not only the juvenile roach with the short-term feed deprivation periods in 3S and 5S groups were not affected by physiological stress due to starvation and increased salinity, but also their growth performance enhanced because of living in iso-osmotic environment of the Caspian Sea.

کلیدواژه‌ها [English]

  • Caspian roach Rutilus caspicus
  • Starvation-refeeding
  • Salinity stress
  • Ion regulation
  • Immune system
آدینه، ح.، جعفریان، حجت الله، سلطانی، م.، فرهنگی، م.، جعفریان، س. 1396. تأثیر سطوح مختلف محدودیت غذایی بر عملکرد رشد، کارایی تغذیه و ترکیبات شیمیایی بدن لارو ماهی قزل‌آلای ‌رنگین ‌کمان (Oncorhynchus mykiss) پرورش یافته در دو محیط آبی. تغذیه آبزیان 3: 11-1.
امیری مقدم، ج.، منیعی، ف.، خدابنده، ص.، ایمان­پور، ج. 1391. اثرات دوره‌های گرسنگی و تغذیه مجدد بر تنظیم یونی-اسمزی ماهیان آزاد دو تابستانه دریای خزر. شیلات، منابع طبیعی ایران 65: 118-109.
امیری، س.ا.، صیاد بورانی، م.، مرادی، م.، پورغلامی، ا. 1387. اثر شوری‌های مختلف بر روی رشد و ماندگاری بچه ماهی سفید انگشت قد (Rutilus frisii kutum). مجله علمی شیلات ایران 17: 30-23.
امین، ن.، شیرنگی، س.ا.، کشیری، ح.، جعفریان، ح.ا.، آدینه، ح. 1400. اثرات روش­های انتقال ناگهانی و تدریجی به شوری آب دریـای خـزر بر تنظیم یونی، بـرخی از پاسخ­های ایمنی و شاخص­های استرس در بچه ماهی کلمه دریای خزر (Rutilus caspicus). علوم و فنون شیلات (پذیرفته شده).
جمیلی، ش.، عریان، ش.، سیف آبادی، ج. 1372. نقش شوری در میزان رشد و قدرت تحمل ماهی بنی. مجله علمی شیلات ایران 2: 55-45.
طاهری، ح.، علی­اصغری، م. 1391. تأثیر گرسنگی و رشد جبرانی روی رشد و ترکیب لاشه بچه ماهی کلمه خزری (Rutilus rutilus caspicus). بهره برداری و پرورش آبزیان 1: 92-81.
قربانی، ص.، طالبی حقیقی، د.، مقصودیه کهن، ح.، صلواتیان، س.م.، پروانه مقدم، د. 1398. اثرات سطوح مختلف چربی جیره روی رشد و ترکیبات لاشه بچه ماهی کلمه دریای خزر (Rutilus rutilus caspicus). علوم و فنون دریایی 18: 33-42.
محسنی، م.، بنایی، م.، نعمت دوست­حقی، ب.، فارابی، س.م.و. 1395. اثر محرومیت غذایی بر توسعه سلول­های کلراید آبششی در بچه ماهی سفید دریای خزر (Rutilus frisii kutum) در مواجهه با تنش شوری. بوم­شناسی آبزیان 4: 88-97.
Abolfathi, M., Hajimoradloo, A., Ghorbani, R., Zamani, A. 2012. Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 161: 166-173.
Akbary, P., Jahanbakhshi, A. 2016. Effect of starvation on growth, biochemical, hematological and non-specific immune parameters in two different size groups of grey mullet, Mugil cephalus (Linnaeus, 1758). Acta Ecologica Sinica 36: 205-211.
Ali, M., Soltanian, S., Akbary, P., Gholamhosseini, A. 2018. Growth performance and lysozyme activity of rainbow trout fingerlings fed with vitamin E and selenium, marjoram (Origanum spp.), and ajwain (Trachyspermum ammi) extracts. Journal of Applied Animal Research 46: 650-660.
Alix, M., Blondeau-Bidet, E., Grousset, E., Shiranghi, A., Vergnet, A., Guinand, B., Chatain, B., Boulo, V., Lignot, J.H. 2017. Effects of fasting and re-alimentation on gill and intestinal morphology and indicators of osmoregulatory capacity in genetically selected sea bass (Dicentrarchus labrax) populations with contrasting tolerance to fasting. Aquaculture 468: 314-325.
Ashouri, G., Yavari, V., Bahmani, M., Yazdani, M. A., Kazemi, R., Morshedi, V., Eslamloo, K., 2014. Cortisol and its metabolites in juvenile Siberian sturgeon, Acipenser baerii Brandt, 1869 in response to short-term food deprivation. Caspian Journal of Environmental Sciences 12: 41-52.
Barcellos, L.J.G., Marquze, A., Trapp, M., Quevedo, R.Z.M., Ferreia, D. 2010. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult Jundiai Rhamdia quelen. Aquaculture 300: 231-236.
Bayunova, L., Barannikova, I., Semenkova, T. 2002. Sturgeon stress reactions in aquaculture. Journal of Applied Ichthyology 18: 397-404.
Boujard, T., Bourel, C., Medale, F., Haylor, G., Moisan, A. 2000. Effects of past nutritional history and fasting on feed intake and growth in rainbow trout Onchorhynchus mykiss. Aquatic Living Resources 13: 129-137.
Caruso, G., Denaro, M. G., Caruso, R., Genovese, L., Mancari, F., Maricchiolo, G. 2012. Short fasting and re-feeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some hematological, biochemical and non-specific immune parameters. Marine Environmental Research 81: 18-25.
Cataldi, E., Di Marco, P., Mandich, A., Cataudella, S. 1998. Serum parameters of Adriatic sturgeon Acipenser naccarii (Pisces: Acipenseriformes): effects of temperature and stress. Comparative Biochemistry and Physiology 121A: 351-354.
Coad, B.W. 1980. Environmental change and its impact on the freshwater fishes of Iran. Biological Conservation 19: 51-80.
Dar, A.S., Prakash, P., Varghese, T., Ishfaq, M., Gupta, S., Krishna, G. 2019. Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding. Gene 692: 94-101.
Ellis, A.E. 1990. Lysozyme assay. In: Stolen, J.S.; Fletcher, D.P.; Anderson, B.S.; Robertson, B.S. (Eds.), Techniques in Fish Immunology. SOS Publication, Fair Haven, NJ, 101-103.
Eslamloo, K., Morshedi, V., Azodi, M., Akhavan, S. 2017. Effect of starvation on some immunological and biochemical parameters in tinfoil barb (Barbonymus schwanenfeldii). Journal of Applied Animal Research 45: 173 178.
Evans, D.H., Piermarini, P.M., Choe, K.P. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiological Review 85: 97-177.
Evans, D.H., Piermarini, P.M., Potts, W.T.W. 1999. Ionic transport in the fish gill epithelium. Journal of Experimental Zoology 283: 641-652.
Feng, G., Shi, X., Huang, X., Zhuang, P. 2011. Oxidative stress and antioxidant defenses after long-term fasting in blood of Chinese sturgeon (Acipenser sinensis). Procedia Environmental Science 8: 469-475.
Foster, G.D., Moon, T.W. 1991. Hypometabolism with fasting in the yellow perch (Perca flavescens): a study of enzymes, hepatocyte metabolism, and tissue size. Physiological Zoology 64: 259-275.
German, D.P., Neuberger, D.T., Callahan, M.N., Lizardo, N.R., Evans, D.H. 2010. Feast to famine: the effects of food quality and quantity on the gut structure and function of a detritivorous catfish (Teleostei: Loricariidae). Comparative Biochemistry and Physiology 155A: 281-293.
Handy, R.D., Depledge, M.H. 1999. Physiological responses: their measurement and use as environmental biomarkers in ecotoxicology. Ecotoxicology 8: 329-349.
Harikrishnan, R., Balasundaram, C., Heo, M.S. 2010. Lactobacillus sakei BK19 enriched diet enhances the immunity status and disease resistance to streptococcosis infection in kelp grouper, Epinephelus bruneus. Fish and Shellfish Immunology 29: 1037-1043.
IFO. 2014. Statistical yearbook of Iranian Fisheries Organization. 1382-1392. Iranian Fisheries Organization 64 p.
Kiabi, B. H., Abdoli, A., Naderi, M. 1999. Status of the fish fauna in the South Caspian Basin of Iran. Zoology in the Middle East 18: 57-65.
Krogdahl, A., Bakke-McKellep, A. M. 2005. Fasting and re-feeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon, Salmo salar L. Comparative Biochemistry and Physiology 141A: 450-460.
Kültz, D., Jürss, K. 1991. Acclimation of chloride cells and Na+/K+-ATPase to energy deficiency in tilapia (Oreochromis mossambicus). Zoologische Jahrbmbicusiency in tilapia (ls and  Zoologie und Physiologie der Tiere 95: 39-50.
Li, H., Xu, W., Jin, J., Yang, Y., Zhu, X., Han, D., Liu, H., Xie, S. 2018. Effects of starvation on glucose and lipid metabolism in gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture 496: 166-175.
Love, R.M. 1970. The chemical biology of fishes. Academic Press, Michigan, 547 p.
Marshall, W.S., Singer, T.D. 2002. Cystic fibrosis transmembrane conductance regulator in teleost fish. Biochimica et Biophysica Acta 1566: 16-27.
Navarro, I., Carneiro, M. N., Parrizas, M., Maestro, J. L., Planas, J., Gutierrez, J. 1993. Post-feeding levels of insulin and glucagon in trout (Salmo trutta fario). Comparative Biochemistry and Physiology 104A: 389-393.
Polakof, S., Arjona, F.J., Sangiao-Alvarellos, S., del Río, M.P.M., Mancera, J.M., Soengas, J.L. 2006. Food deprivation alters osmoregulatory and metabolic responses to salinity acclimation in gilthead sea bream Sparus auratus. Journal of Comparative Physiology 176: 441-452.
Rubio, V.C., S.tive Physiolo, F.J., Madrid, J.A. 2005. Effects of salinity on food intake and macronutrient selection in European sea bass. Physiology and Behavior 85: 333-339.
Sakyi, M.E., Cai, J., Tang, J., Xia, L., Li, P., Abarike, E.D., Jian, J. 2020. Short term starvation and re-feeding in Nile tilapia (Oreochromis niloticus, Linnaeus 1758): Growth measurements, and immune responses. Aquaculture Reports 16: 100261.
Shirangi, S.A., Kalbassi, M.R., Khodabandeh, S., Lignot, J.H. 2019. Effects of cortisol treatment on the salinity tolerance of Persian sturgeon, Acipenser persicus Juveniles. Caspian Journal of Environmental Sciences 17: 131-142.
Shoji, J., Aoyama, M., Fujimoto, H., Iwamoto, A., Tanaka, M. 2002. Susceptibility to starvation by piscivorous Japanese Spanish mackerel Scomberomorus niphonius (Scombridae) larvae at first feeding. Fisheries Science 68: 59-64.
Sinha, A.K., Rasoloniriana, R., Dasan, A.F., Pipralia, N., Blust, R., Boeck, G.D. 2015. Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of European sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities. Aquatic Toxicology 160: 39-56.
Siwicki A.K., Anderson D.P. 1993. Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. Fish Disease Diagnosis and Prevention Methods Olsztyn, Poland, 105-112.
Tamadoni, R., Nafisi Bahabadi, M., Morshedi, V., Bagheri, D., Torfi Mozanzadeh, M. 2020. Effect of short-term fasting and re-feeding on growth, digestive enzyme activities and antioxidant defence in yellowfin seabream, Acanthopagrus latus (Houttuyn, 1782). Aquaculture Research 51: 1437-1445.
Taylor, J.R., Mager, E.M., Grosell, M. 2010. Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation. Journal of Experimental Biology 213: 459-468.
Torfi Mozanzadeh, M., Safari, O., Oosooli, R., Mehrjooyan, S., Zabayeh Najafabadi, M., Hoseini, S.J., Saghavi, H., Monem, J. 2021. The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin Sea bream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture 534: 736329.
Urbina, M.A., Glover, C.N. 2015. Effect of salinity on osmoregulation, metabolism and nitrogen excretion in the amphidromous fish, inanga (Galaxias maculatus). Journal of Experimental Marine Biology and Ecology 473: 7-15.
Van Dijk, P., Staaks, G., Hardewig, I. 2002. The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oecologia 130: 496-504.
Varsamos, S., Nebel, C., Charmantier, G. 2005. Ontogeny of osmoregulation in postembryonic fish: A review. Comparative Biochemistry and Physiology 141A: 401-429.
White, A., Fletcher, T.C. 1984. Radioimmunoassay of serum cortisol in the plaice (Pleuronectes platessa L.). General and Comparative Endocrinology 53: 410-417.
Whittamore, J.M. 2011. Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. Journal of Comparative Physiology 182B: 1-39.
Wood, C.M., Bucking, C., Grosell, M. 2010. Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost. Journal of Experimental Biology 213: 2681-2692.
Wu, X., Chen, Y., Lai, J., Liu, Y., Song, M., Gong, Q., Long, Z. 2021. Effects of starvation and refeeding on growth performance, appetite, growth hormone-insulin-like growth factor axis levels and digestive function of Acipenser dabryanus. British Journal of Nutrition 126: 695-707.
Zheng, Z.L., Tan, J.Y.W., Liu, H.Y., Zhou, X.H., Xiang. X., Wang, K.Y. 2009. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture 292: 214-218.