تأثیر سطوح مختلف ریزجلبک کلرلا (Chlorella vulgaris) و مخمر نانوایی (Saccharomyces cerevisiae) بر عملکرد رشد، آنزیم‌های گوارشی و میکروبیوتای روده بچه‌ماهیان استرلیاد (Acipenser ruthenus)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، گیلان

2 گروه شیلات، واحد تالش، دانشگاه آزاد اسلامی، تالش، گیلان

چکیده

هدف از انجام تحقیق حاضر، بررسی تأثیر ریزجلبک کلرلا (Chlorella vulgaris) و مخمر نانوایی (Saccharomyces cerevisiae) بر عملکرد رشد، آنزیم­های گوارشی و میکروبیوتای روده در بچه­ماهیان استرلیاد (Acipenser ruthenus) بود. تعداد 315 قطعه بچه­ماهی استرلیاد (2/0 ± 5/24 گرم) در 7 تیمار تقسیم شده و با غذای پایه حاوی مقادیر مختلف کلرلا و مخمر به مدت 8 هفته غذادهی شدند. تیمارهای 1 تا 7 به­ترتیب با غذای پایه حاوی 0% کلرلا و مخمر، 1% مخمر، 5/0% مخمر، 3 % کلرلا، 5% کلرلا، ترکیب 5/0% مخمر و 5% کلرلا و ترکیب 3% کلرلا و 1% مخمر غذادهی شدند. در پایان آزمایش، شاخص­های رشد، آنزیم­های گوارشی و تعداد کل باکتری­های روده اندازه­گیری شدند. نتایج نشان داد که افزودن مخمر و ریزجلبک کلرلا به جیره غذایی ماهیان سبب بهبود عملکرد رشد، افزایش ترشح آنزیم­های گوارشی و نیز افزایش تعداد باکتری­های روده در مقایسه با تیمار شاهد شد (05/0>p). بهترین عملکرد رشد در تیمار 5 (5% کلرلا) و پس از آن، تیمارهای 6 و 7 (ترکیب کلرلا و مخمر) مشاهده شد، به­طوری که بیشترین مقدار افزایش وزن بدن، میانگین رشد روزانه، ضریب رشد ویژه و کمترین ضریب تبدیل غذایی در این تیمارها مشاهده شد (05/0>p). تفاوت معنی­داری در میزان بازماندگی تیمارها مشاهده نشد (05/0<p). نتایج این تحقیق نشان داد که استفاده از ریزجلبک کلرلا و مخمر نانوایی و نیز ترکیب آن­ها در جیره غذایی بچه­ماهیان تأثیر معنی­داری در بهبود عملکرد رشد، ترشح آنزیم­های گوارشی و میکروبیوتای روده دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of different levels of dietary microalgae chlorella, Chlorella vulgaris and brewer’s yeast, Saccharomyces cerevisiae on growth performance, digestive enzymes and intestine microbiota in juvenile sterlet, Acipenser ruthenus

نویسندگان [English]

  • Elnaz Naseri khalkhali 1
  • Abbas ali Zamini 1
  • Habib Vahabzadeh 1
  • Hadi Ershad langeroudi 1
  • Reza Taati 2
1 Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Guilan, Iran
2 Department of Fisheries, Talesh Branch, Islamic Azad University, Talesh, Guilan, Iran
چکیده [English]

The aim of the present study was to investigate the effect of microalgae, Chlorella vulgaris, and brewer’s yeast, Saccharomyces cerevisiae, on growth performance, digestive enzymes activity and intestinal microbiota in juvenile sterlet, Acipenser ruthenus. Total numbers of 315 juveniles (24.5 ± 0.2 g) were divided into 7 treatments and were fed with a basal diet containing different amounts of Chlorella and yeast during 8 weeks. Treatments 1 to 7 were fed with a basal included diet that not supplemented with Chlorella and yeast (control or T1); and supplemented with 1% yeast (T2); 0.5% yeast (T3); 3% Chlorella (T4); 5% Chlorella (T5); a combination of 0.5% yeast and 5% Chlorella (T6); and also a combination of 3% yeast and 1% Chlorella (T7), respectively. At the end of trial, growth indices, digestive enzymes and total number of intestinal bacteria were measured. The results showed that the addition of yeast and Chlorella (T6 and T7) to the fish diet enhanced growth performance, increased the secretion of digestive enzymes and also elevated the number of intestinal bacteria compared to the control (p<0.05). The best growth performance was observed in T5 (5% Chlorella), followed by T6 and T7 (combination of Chlorella and yeast). So that, the highest amount of body weight gain, average daily growth, specific growth rate, and the lowest feed conversion ratio were observed in T5, T6 and T7 (p<0.05). No significant difference was observed in the survival rate between treatments (p>0.05). The results showed that supplementing the diet of sterlet juveniles with microalgae and brewer’s yeast as well as with their combination significantly enhance the growth performance, secretion of digestive enzymes and intestinal bacterial flora.

کلیدواژه‌ها [English]

  • Chlorella
  • Yeast
  • Growth performance
  • Digestive enzymes
  • Lactic acid bacteria
  • Sterlet sturgeon
اکبری، پ. 1398. عملکرد رشد، ترکیبات شیمیایی بدن و آنزیم های گوارشی ماهی کفال خاکستری (Mugil cephalus) تغذیه شده با سطوح مختلف مخمر نانوایی (Saccharomyces cerevisiae). مجله علمی شیلات ایران 28: 11-1.
پناهی صاحبی، ح. اسماعیلی فریدونی، ا.، ایمان پور، م.، طاهری میرقائد، ع.، براری، ع.، کاویان پور، م. 1398. اثرات گنجاندن سطوح مختلف پربیوتیک ایمنووال و پروبیوتیک پری مالاک بر شاخص­های رشد، بازماندگی، ترکیب بدن و فاکتورهای خونی بچه ماهی کپور معمولی دریایی (Cyprnius carpio). تحقیقات دامپزشکی 74: 53-45.
فلاحتکار، ب.، سلطانی، م.، ابطحی، ب.، کلباسی، م.ر.، پورکاظمی، م. 1382. تاثیر ویتامین C بر برخی پارامترهای رشد، نرخ بازماندگی و شاخص کبدی در فیل ماهی (Huso huso) پرورشی. پژوهش و سازندگی در دام و آبزیان 72: 103-98.
فلاحتکار، ب.، 1386. ساخت اسید اسکوربیک در سه گونه از ماهیان خاویاری (Acipenseriformes) و نقش آن در پارامترهای کمی رشد. زیست شناسی ایران 20: 137-128.
کوچکی، ل.، ذاکری، م.، موسوی، س.م.، یاوری، و.، کوچنین، پ. 1394. تأثیرات دفعات غذادهی در شاخص‌های رشد، تغذیه و ترکیبات بیوشیمیایی ماهی استرلیاد (Acipenser ruthenus). نشریه شیلات 68: 629-615.
محمدنژاد شموشکی، م.، مازینی، م. 1391. اثر پروبیوتیک مخمر نانوایی (Saccharomyces cerevisiae) روی رشد و بازماندگی بچه­ماهی کلمه (Rutilus rutilus caspicus). توسعه آبزی­پروری 6: 111-103.
مرشدی، و، آق، ن.، مرمضی، ج.، نوری، ف.، محمدیان، ت. 1394. بررسی فعالیت آنزیم­های گوارشی، ترکیب بیوشیمیایی لاشه و فلور باکتریایی روده بچه ماهی صبیتی (Sparidentex hasta) در پاسخ به سطوح مختلف زایلواولیگوساکارید جیره. فیزیولوژی و تکوین جانوری 31: 47-37.
نجفی انفرادی، م.، محمدی زاده، ف.، سلطانی، م.، بحری، ا.، شیخ­زاده، ن. 1398. بررسی اثر لاکتوباسیلوس پلانتاروم و مانان الیگوساکارید بر رشد و برخی فاکتورهای گوارشی ماهی قزل آلای رنگین کمان (Oncorhynchus mykiss). فیزیولوژی و تکوین جانوری 13: 83-69.
یارمحمدی، م.، پورکاظمی، م.،  قاسمی، ا.، حسن زاده صابر، م.، نوروزفشخامی، م.ر.، برادران نویری، ش. 1390. بررسی تعیین مارکر جنسیت در تاسماهی ایرانی (Acipenser persicus) با استفاده از نشانگر مولکولی AFLP. زیست شناسی ایران 24: 943-935.
 
Abolfathi, M., Hajimoradloo, A., Ghorbani, R. Zamani, A. 2012. Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comparative Biochemistry and Physiology A: Molecular Integrative Physiology 161: 166-173.
Abu-Elala, N.M., Younis, N.A., Abubakr, H.O., Ragaa, N.M., Borges, L.L., Bonato, M.A. 2018. Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia. The Egyptian Journal of Aquatic Research 44: 333-341.
Abu-Elala, N.M., Younis, N.A., Abubakr, H., Ragaa, N.M., Borges, L.L., Bonato, M.A. 2020. Influence of dietary fermented Saccharomyces cerevisiae on growth performance, oxidative stress parameters, and immune response of cultured Oreochromis niloticus. Fish Physiology and Biochemistry 46: 533-545.
Adel, M., El-sayed, A., Yeganeh, S., Dadar, M. 2016. Effect of Potential Probiotic Lactococcus lactis Subsp. lactis on Growth Performance, Intestinal Microbiota, Digestive Enzyme Activities, and Disease Resistance of Litopenaeus vannamei. Probiotics and Antimicrobial Proteins 9: 150-156.
Akbary, P., Malek Raeisi, E. 2020. Effect of dietary supplementation of Chlorella vulgaris on several physiological parameters of grey mullet, Mugil cephalus. Iranian Journal of Fisheries Sciences 19: 1130-1139.
AOAC. 1995. Official methods of analysis of the association of official analytical chemists. Arlington, Virginia, USA. 1298 p.
Badwy, T.M., Ibrahim, E.M., Zeinhom, M. 2008. Partial replacement of fish meal with dried microalgae (Chlorella spp. and Scenedesmus spp.) in Nile Tilapia (Oreochromis niloticus) diets. 8th International Symposium on Tilapia in Aquaculture. October 12-14, Cairo, Egypt.
Bai, S.C., Koo, J.W., Kim, K.W., Kim, S.K. 2001. Effects of Chlorella powder as a feed additive on growth performance in juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquaculture Research 32: 92-98.
Bai, S.D. 2016. Effect of dietary supplementary feed of spirulina on digestive enzymes in fingerlings of common carp (Cyprinus carpio, L. 1758). European Journal of Pharmaceutical and Medical Research 3: 421-426.
Bairagi, A., Sarkar Ghosh, K., Sen, S.K., Ray, A.K. 2002. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture 10:109-121.
Bandyopadhyay, P., Mishra, S., Sarkar, B., Swain, S.K., Pal, A., Tripathy, P.P., Ojha, S.K. 2015. Dietary Saccharomyces cerevisiae boosts growth and immunity of IMC Labeo rohita (Ham.) juveniles. Indian Journal of Microbiology 55:81–87.
Buts, J.P., De Keyser, N., De Raedemaeker, L. 1994. Saccharomyces boulardii enhances rat intestinal enzyme expression by endo luminal release of polyamines. Pediatric Research 36: 522-527.
Cerezuela, R., Cuesta, A., Meseguer, J., Esteban, A. 2008. Effect of inulin on gilthead seabream (Sparus aurata) innate immune parameters. Fish & shellfish Immunology 24: 663-668.
Chebanov, M.S., Galich, E.V. 2011. Sturgeon hatchery manual. FAO Fisheries and Aquaculture Technical Paper. No. 558. 303 p.
Citarasu, T. 2010. Herbal biomedicines a new opportunity for aquaculture industry. Aquaculture International. 18: 403-414.
Hosseinifar, S.H., Mirvaghefi, A., Merrifield, D.L. 2011. The effects of dietary inactive brewer's yeast Saccharomyces cerevisiae var. ellipsoideus on the growth, physiological responses and gut microbiota of juvenile beluga (Huso huso). Aquaculture 318: 90-94.
Khani, M., Soltani, M., Shamsaie Mehrjan, M., Foroudi, F., Ghaeni, M. 2017. The effects of Chlorella vulgaris supplementation on growth performance, blood characteristics, and digestive enzymes in Koi (Cyprinus carpio). Iranian Journal of Fisheries Sciences 16: 832-843.
Kim, K.W., Bai, S.C., Koo, J.W., Wang, X., Kim, A.K. 2007. Effects of dietary Chlorella ellipsoidea supplementation on growth, blood characteristics, and whole-body composition in juvenile Japanese flounder Paralichthys olivaceus. Journal of the World Aquaculture Society 33: 425-431.
Lee, S.Y., Lee, B.H. 1990. Esterlytic and lipolytic activities of Lactobacillus casei subsp. scasei L129. Food Science 55: 1-19.
Li, P., Gatlin III, D.M. 2003. Evaluation of brewer's yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture 219: 681- 692.
Mahious, A.S., Gatesoupe, F.J. Hervi, M., Metailler. M.R., Ollevier. F. 2006. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, 1758). Aquaculture International 14: 219-229.
Merrifield, D.L., Bradley, G., Harper, G.M., Baker, R.T.M., Munn, C.B., Davies, S.J. 2011. Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Nutrition 17: 73-79.
Mohammadi, F., Mousavi, S.M., Zakeri, M., Ahmadmoradi, E. 2016. Effect of dietary probiotic, Saccharomyces cerevisiae on growth performance, survival rate and body biochemical composition of three spot cichlid (Cichlasoma trimaculatum). AACL Bioflux 9: 451-457.
Mohammadian, T., Alishahi, M., Tabandeh, M.R., Ghorbanpoor, M., Gharibi, D. 2017. Effect of Lactobacillus plantarum and Lactobacillus delbrueckii subsp. bulgaricus on growth performance, gut microbial flora and digestive enzymes activities in Tor grypus (Karaman, 1971). Iranian Journal of Fisheries Sciences 16: 296-317. 
Mohammadiazarm, H., Sang-Min, L. 2014. Evaluating growth performance, amino acid profile and biochemical changes in juvenile olive flounder, Paralichthys olivaceus under partial feeding with fermented soybean meal. Journal of Persian Gulf 5: 65-76.
Mohapatra, S., Chakraborty, T., Kumar, V., DeBoeck, G., Mohanata, K.N. 2012. Aquaculture and stress management: a review of probiotic intervention. Journal of Animal Physiology and Animal Nutrition 97: 405-430.
Nakagawa, H. 1997. Effect of dietary algae on improvement of lipid metabolism in fish. Biomedicine and Pharmacotherapy 51: 345-348.
Radhakrishnan, S., Bhavan, S., Seenivasan, C., Muralisankar, T. 2015. Effect of dietary replacement of fishmeal with Chlorella vulgaris on growth performance, energy utilization and digestive enzymes in Macrobrachium rosenbergii postlarvae. International Journal of Fisheries and Aquaculture 7: 62-70.
Radhakrishnan, S., Ibrahim, E.H., Belal, C., Seenivasan, T., Muralisankarb, P., Bhavan, B. 2016. Impact of fishmeal replacement with Arthrospira platensis on growth performance, body composition and digestive enzyme activities of the freshwater prawn, Macrobrachium rosenbergii. Aquaculture Reports 3: 35-44.
Ringo, E., Gatesoup F.J. 1998. Lactic acid bacteria in fish: A review. Aquaculture 160: 177-203.
Ringo, E., Olsen, R.E., Dalmo, R.A., Amlund, H., Hemre, G., Bakke, A.M. 2010. Prebiotics in aquaculture: a review. Aquaculture Nutrition 16: 117-136.
Safi, C., Zebib, B., Merah,O., Pontalier,P., Vaca-Garsia, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 35: 265-278.
Sutthi, N., Thaimuangphol, W. 2020. Effects of Yeast (Saccharomyces cerevisiae) on growth performance, body composition and blood chemical of Nile tilapia (Oreochromis niloticus) under different salinity conditions. Iranian Journal of Fisheries Sciences 19: 1428-1446.
Sutthi, N., Wigraiboon, S. and Supakankul, P. 2018. Effects of yeast (Saccharomyces cerevisiae) supplements on growth performance and blood chemical profiles of Nile tilapia (Oreochromis niloticus) at different stocking density. Urapha Science Journal 23: 649-668.
Tidwell, J.H., Allan, G.L. 2001. Fish as food: aquaculture's contribution. EMBO Reports 2: 958-963.
Tovar-Ramírez, D., Mazurais, D., Gatesoupe, J.F., Quazuguel, P., Cahu, C.L. and Zambonino-Infante, J.L. 2010. Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture 300: 142-147.
Vine, N., Leukes, W., Kaiser, H., Daya, S., Baxter, J., Hecht, T. 2004. Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases 27: 319-326.
Waché, Y., Auffray, F., Gatesoupe, F.J., Zambonino, J., Gayet, V., Labbé, L., Quentel, C. 2006. Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Oncorhynchus mykiss, and fry. Aquaculture 258: 470-478.
Xu, W., Gao, Zh., Qi, Zh., Qiu, M., Peng, J., Shao, R. 2014.  Effect of dietary Chlorella on the growth performance and physiological parameters of Gibel carp, Carassius auratus gibelio. Turkish Journal of Fisheries and Aquatic Sciences 14: 53-57.
Yamaguchi, K. 1996. Recent advances in microalgal bio science in Japan, with special reference to utilization of biomass and metabolites: a review. Journal of Applied Phycology 8: 487-502.
Ziólkowska, E., Bogucka, J., Dankowiakowska, A., Rawski, M., Mazurkiewicz, J., Stanek, M. 2020. Effects of a trans-galactooligosaccharide on biochemical blood parameters and intestine morphometric parameters of common carp (Cyprinus carpio L.). Animals 10: 723